
Geometry Study Guide 2 Spring 2021

Regular Surfaces

Definition 1. A subset S ⊂ R3 is a regular surface if, for each p ∈ S, there exists an open
neighborhood V in R3, an open set U ⊂ R2 and a map

X : U → V ∩ S

such that

(1) X is smooth, meaning that if we write

X(u, v) = (x(u, v), y(u, v), z(u, v)), (u, v) ∈ U,

then the real-valued functions x(u, v), y(u, v) and z(u, v) have continuous partial derivatives
of all orders in U.

(2) X is a homeomorphism, meaning that it is a one-to-one correspondence between the points
of U and V ∩ S which is continuous in both directions; that is, X−1 is the restriction of a
continuous map F : W ⊂ R3 → R2 defined on an open set W containing V ∩ S.

(3) (The regularity condition) For each q = (u, v) ∈ U, the linear map

dXq =



∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

∂z

∂u

∂z

∂v


: R2 → R3,

called the differential of X at q, is one-to-one.

The mapping X : U → V ∩S is called a parametrization or a system of local coordinates for the
surface S in the coordinate neighborhood V ∩ S of p.

Remarks Note that a surface is defined as a subset S of R3, not as a map as in the curve
case. This is achieved by covering S with the traces of parameterization which satisfy the three
conditions. Also note that
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• Condition (1) is natural if we need to do differential calculus on S.

• Condition (2) has the purpose of preventing self-intersection in regular surfaces. It is also
essential to prove that certain objects defined in terms of a parameterization do not depend
on this parameterization but only on S itself.

• To give condition 3 a more familiar form, let us compute the matrix of the linear map dXq

in the canonical bases e1 = (1, 0), e2 = (0, 1) of R2 with coordinates (u, v) and f1 = (1, 0, 0),
f2 = (0, 1, 0), f3 = (0, 0, 1) of R3, with coordinates (x, y, z).

Let q = (u0, v0). The vector e1 is tangent to the curve u→ (u, v0) whose image under X is
the curve

u→ (x(u, v0), y(u, v0), z(u, v0)).

This image curve (called the coordinate curve v = v0) lies on S and has at X(q) the tangent
vector (

∂x

∂u
,
∂y

∂u
,
∂z

∂u

)
=
∂X

∂u
,

where the derivatives are computed at (u0, v0) and a vector is indicated by its components
in the basis {f1, f2, f3}. By the definition of differential

dXq(e1) =
d

du
X(u, v0)|u=u0 =

(
∂x

∂u
,
∂y

∂u
,
∂z

∂u

)
=
∂X

∂u
.

Similarly, using the coordinate curve u = u0 (image by X of the curve v → (u0, v)), we
obtain

dXq(e2) =
d

dv
X(u0, v)|v=v0 =

(
∂x

∂v
,
∂y

∂v
,
∂z

∂v

)
=
∂X

∂v
.

Condition (3) may now be expressed by requiring the two column vectors of this matrix

to be linearly independent; or, equivalently, that the vector product
∂X

∂u
∧ ∂X
∂v
6= 0; or, in

still another way, that one of the minors of order 2 of the matrix of dXq, that is, one of the
Jacobian determinants

∂(x, y)

∂(u, v)
=

∣∣∣∣∣∣∣∣∣
∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣∣∣ ,
∂(y, z)

∂(u, v)
,

∂(x, z)

∂(u, v)
,
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is different from zero at q. So, Condition (3) will gurantee the existence of a tangent plane
at all points of S.

Example Show that the unit sphere S2 = {(x, y, z) ∈ R3;x2 + y2 + z2 = 1} is a regular surface.

• Let U = {(x, y) ∈ R2;x2 + y2 < 1}, R2 = {(x, y, z) ∈ R3; z = 0} and the maps X1, X2 :
U ⊂ R2 → R3 be defined by

X1(x, y) = (x, y,+
√

1− x2 − y2), X2(x, y) = (x, y,
√

1− x2 − y2), (x, y) ∈ U.

• Let U = {(x, z) ∈ R2;x2 + z2 < 1}, R2 = {(x, y, z) ∈ R3; y = 0} and the maps X3, X4 :
U ⊂ R2 → R3 be defined by

X3(x, z) = (x,+
√

1− x2 − z2, z), X4(x, y) = (x,−
√

1− x2 − z2, z), (x, z) ∈ U.

• Let U = {(y, z) ∈ R2; y2 + z2 < 1}, R2 = {(x, y, z) ∈ R3;x = 0} and the maps X5, X6 :
U ⊂ R2 → R3 be defined by

X5(y, z) = (+
√

1− x2 − z2, y, z), X6(y, z) = (−
√

1− x2 − z2, y, z), (y, z) ∈ U.

Since {Xi : U → S2 | 1 ≤ i ≤ 6} are parametrizations covering S2 completely, S2 is a regular
surface.

For most applications, it is convenient to relate parametrizations to the geographical coordinates
on S2. Let V = {(θ, φ); 0 < θ < π, 0 < φ < 2π} and let X : V → R3 be given by

X(θ, φ) = (sin θ cosφ, sin θ sinφ, cos θ).
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Clearly, X(V ) ⊂ S2 and X is a parametrization of S2, where θ is usually called the colatitude
(the complement of the latitude) and φ the longitude. Note that X(V ) only omits a semicircle
of S2 (including the two poles) and that S2 can be covered with the coordinate neighborhoods
of two parametrizations of this type.

Example shows that deciding whether a given subset of R3 is a regular surface directly from
the definition may be quite tiresome. Before going into further examples, we shall present two
propositions which will simplify this task. Proposition 1 shows the relation which exists between
the definition of a regular surface and the graph of a function z = f(x, y). Proposition 2 uses the
inverse function theorem and relates the definition of a regular surface with the subsets of the
form f(x, y, z) = constant.

Proposition 1. If f : U → R is a differentiable function in an open set U of R2, then the graph
of f over U , that is, the subset of R3 given by

S = the graph of a differentiable function f on an open subset U ⊂ R2

= {(x, y, f(x, y)) | (x, y) ∈ U ⊂ R2}

is a regular surface.

Proof It suffices to show that the map X : U → R3 given by

X(u, v) = (u, v, f(u, v)) for (u, v) ∈ U

is a parametrization of the graph whose coordinate neighborhood covers every point of the graph.

Definition 2. Given a differentiable map F : U ⊂ Rn → Rm defined in an open set U of Rn, we
say that p ∈ U is a critical point of F if the differential dFp : Rn → Rm is not a surjective (or
onto) mapping. The image F (p) ∈ Rm of a critical point is called a critical value of F. A point
of Rm which is not a critical value is called a regular value of F .

Remark Recall that

Implicit Function Theorem

Let U ⊆ Rn+m ≡ Rn × Rm be an open set,

f = (f1, . . . , fm) : U → Rm belong to Class C1(U),

(a, b) = (a1, . . . , an, b1, . . . , bm) ∈ U be a point at which f(a, b) = 0 ∈ Rm,

and the m×m matrix Dyf |(a,b) =

[
∂fi
∂yj

(a, b)

]
1≤i,j≤m

be invertible.

Then there exists

an open neighborhood A of a in Rn,

an open neighborhood B of b in Rm,

and a unique g : A→ B belonging to Class C1(A)

such that
b = g(a) and f(x, g(x)) = 0 ∈ Rm for all x ∈ A

and thus

f−1(0) ∩ A×B = {(x, y) ∈ A×B ⊂ U ⊆ Rn × Rm | f(x, y) = 0 ∈ Rm}
= {(x, g(x)) | x ∈ A}
= the graph of g over A.
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Example (2-2 Exercises #17) Prove that

(a) The inverse image of a regular value of a differentiable function

f : U ⊂ R2 → R

is a regular plane curve. Give an example of such a curve which is not connected.

Proof Let r be a regular value of f. For each

p = (p1, p2) ∈ f−1(r) ∩ U = {(x, y) ∈ U ⊂ R2 | f(x, y) = r} ⊂ R2,

since dfp = (fx(p), fy(p)) : R2 → R is surjective, (fx(p), fy(p)) 6= (0, 0). By interchanging x
and y if necessary, we may assume that fy(p) 6= 0, thus, by the Implicit Function Theorem,
there exists an open set

I1 × I2 = (a1, b1)× (a2, b2) containg p = (p1, p2)

and a unique continuously differentiable function g : I1 → I2 such that

f(x, g(x)) = r for all x ∈ I1 =⇒ f−1(r) ∩ I1 × I2 = {(x, g(x)) | x ∈ I1} ⊂ R2

is a regular plane over I1 = (a1, b1) since g is differentiable and the tangent vector (1, g′(x)) 6=
(0, 0) at each (x, g(x)), x ∈ I1. Since p is an arbitrary point in f−1(r)∩U, f−1(r) is a regular
plane curve.

Example Let U = {(x, y) | x 6= 0} and f(x, y) = xy for (x, y) ∈ U. Then f−1(1) = {(x, 1

x
) |

x > 0} ∪ {(x, 1

x
) | x < 0}= disjoint union of two regular plane curves.

(b) The inverse image of a regular value of a differentiable map

F = (F1, F2) : U ⊂ R3 → R2

is a regular curve in R3.

Proof Let r = (r1, r2) be a regular value of F = (F1, F2). For each

p = (p1, p2, p3) ∈ F−1(r) ∩ U = {(x, y, z) ∈ U ⊂ R3 | F (x, y, z) = r} ⊂ R3,

since

dFp =

(
(F1)x(p) (F1)y(p) (F1)z(p)
(F2)x(p) (F2)y(p) (F2)z(p)

)
: R3 → R2 is surjective,

the matrix

(
(F1)x(p) (F1)y(p) (F1)z(p)
(F2)x(p) (F2)y(p) (F2)z(p)

)
is of rank 2. By interchanging x, y or z if nec-

essary, we may assume that(
(F1)y(p) (F1)z(p)
(F2)y(p) (F2)z(p)

)
is nonsingular, (F1)z(p) 6= 0, (F2)y(p) 6= 0,

thus, by the Implicit Function Theorem, there exist an open neighborhood I1 × I2 × I3 =
(a1, b1) × (a2, b2) × (a3, b3) of (p1, p2, p3) and unique continuously differentiable functions
g = (g1, g2) : I1 → I2 × I2, h : I1 × I2 → I3, k : I1 × I3 → I2 such that

F (x, g(x)) = r for all x ∈ I1 =⇒ F−1(r) ∩ I1 × I2 × I3 = {(x, g1(x), g2(x)) | x ∈ I1} ⊂ R3

is a regular curve in R3
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F1(x, y, h(x, y)) = r1 for all (x, y) ∈ I1 × I2

=⇒ (F1)−1(r1) ∩ I1 × I2 × I3 = {(x, y, h(x, y)) | (x, y) ∈ I1 × I2} ⊂ R3

is a graph of a differentiable function h over I1 × I2

=⇒ (F1)−1(r1) ∩ I1 × I2 × I3 is a regular surface in R3

F2(x, k(x, z), z) = r2 for all (x, z) ∈ I1 × I3

=⇒ (F2)−1(r2) ∩ I1 × I2 × I3 = {(x, k(x, z).z) | (x, z) ∈ I1 × I3} ⊂ R3

is a graph of a differentiable function k over I1 × I3

=⇒ (F2)−1(r2) ∩ I1 × I2 × I3 is a regular surface in R3

Since p is an arbitrary point in F−1(r) ∩ U, these imply that F−1(r) is a regular curve,
(F1)−1(r1) and (F2)−1(r2) are regular surfaces in R3 and F−1(r) = (F1)−1(r1) ∩ (F2)−1(r2)

Proposition 2. If f : U ⊂ R3 → R is a differentiable function and a ∈ f(U) is a regular value
of f, then the level set of a regular value f−1(a) = {(x, y, z) ∈ U | f(x, y, z) = a} is a regular
surface in R3.

Proof Let p = (x0, y0, z0) be a point of f−1(a). Since a is a regular value of f, it is possible to
assume, by renaming the axes if necessary, that fz(p) 6= 0. We define a mapping F : U ⊂ R3 → R3

by F (x, y, z) = (x, y, f(x, y, z)) for (x, y, z) ∈ U . Since

det(dFp) =

∣∣∣∣∣∣
1 0 0
0 1 0

fx(p) fy(p) fz(p)

∣∣∣∣∣∣ = fz(p) 6= 0,

and by the inverse funtion theorem, there exist open neighborhoods V of p and W of F (p) such
that F : V → W is invertible and the inverse F−1 : W → V is differentiable.

Let F−1 be defined by F−1(u, v, t) = (g1(u, v, t), g2(u, v, t), g2(u, v, t)) for (u, v, t) ∈ W. Since

(u, v, t) = F ◦ F−1(u, v, t) = F (g1, g2, g3) = (g1, g2, f(g1, g2, g3)) for (u, v, t) ∈ W,

we have g1(u, v, t) = u, g2(u, v, t) = v and

(x, y, z) = F−1(u, v, t) = (u, v, g3(u, v, t)) for (u, v, t) ∈ W, (x, y, z) ∈ V .
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This implies that π(V ) ∼= π(W ) and z = g3(u, v, a) = h(u, v) is a differentiable function for
(u, v) ∈ π(W ), where π : R3 → R2 is the projection map defined by π(u, v, t) = (u, v) for
(u, v, t) ∈ R3. Since

F (f−1(a) ∩ V ) = W ∩ {(u, v, t) | t = a}
=⇒ f−1(a) ∩ V = F−1(W ∩ {(u, v, t) | t = a}) = {(u, v, g3(u, v, a)) | (u, v) ∈ π(W )}

π(W )∼=π(V )
=⇒

g3(x,y,a)=h(x,y)
f−1(a) ∩ V = {(x, y, h(x, y)) | (x, y) ∈ π(V )},

we conclude that f−1(a)∩V is the graph of h over π(V ). By Prop. 1, f−1(a)∩V is a coordinate
neighborhood of p. Therefore, every p ∈ f−1(a) can be covered by a coordinate neighborhood,
and so f−1(a) is a regular surface.

Example The ellipsoid
x2

a2
+
y2

b2
+
z2

c2
= 1

is a regular surface. In fact, it is the set f−1(0) where

f(x, y, z) =
x2

a2
+
y2

b2
+
z2

c2
− 1

is a differentiable function and 0 is a regular value of f. This follows from the fact that the
partial derivatives fx = 2x/a2, fy = 2y/b2, fz = 2z/c2 vanish simultaneously only at the point
(0, 0, 0), which does not belong to f−1(0). This example includes the sphere as a particular case
(a = b = c = 1).

Example The hyperboloid of two sheets −x2 − y2 + z2 = 1 is a regular surface, since it is given
by S = f−1(0), where 0 is a regular value of f(x, y, z) = −x2− y2 + z2− 1. Note that the surface
S is not connected; that is, given two points in two distinct sheets (z > 0 and z < 0) it is not
possible to join them by a continuous curve α(t) = (x(t), y(t), z(t)) contained in the surface;
otherwise, z changes sign and, for some t0, we have z(t0) = 0, which means that α(t0) ∈ S.
Example Let a > r > 0, S1 = {(y, z) | (y − a)2 + z2 = r2} and T be the surface, called torus,
generated by rotating S1 about z-axis. Hence the points (x, y, z) of T satisfy the equation

z2 = r2 − (
√
x2 + y2 − a)2.

Therefore, T is the inverse image of r2 by the function

f(x, y, z) = z2 + (
√
x2 + y2 − a)2.

Note that f is differentiable for (x, y) 6= (0, 0), and r2 is a regular value of f. It follows that the
torus T is a regular surface.

Proposition 3. Let S ⊂ R3 be a regular surface and p ∈ S. Then there exists an open
neighborhood V of p in S such that V is the graph of a differentiable function which has one of
the following three forms:

z = f(x, y), y = g(x, z), x = h(y, z).

That is, regular surface is locally a graph of a differentiable function.

Proof LetX : U ⊂ R2 → R3 be a parametrization of S at p, and writeX(u, v) = (x(u, v), y(u, v), z(u, v)),
(u, v) ∈ U. By condition 3 of Def. 1, one of the Jacobian determinants

∂(x, y)

∂(u, v)

∂(y, z)

∂(u, v)

∂(z, x)

∂(u, v)
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is not zero at X−1(p) = q.

Suppose first that
∂(x, y)

∂(u, v)
(q) 6= 0, and consider the map π◦X : U → R2, where π(x, y, z) = (x, y)

for (x, y, z) ∈ R3, defined by

π ◦X(u, v) = (x(u, v), y(u, v)), for (u, v) ∈ U.

Since det d(π ◦X)(q) =
∂(x, y)

∂(u, v)
(q) 6= 0, by the inverse function theorem, there exist open neigh-

borhoods V1 of q, V2 of π ◦X(q) such that

• π ◦ X : V1 → V2 is one-to-one, onto and has a differentiable inverse (π ◦ X)−1 : V2 → V1

defined by
(π ◦X)−1(x, y) = (u(x, y), v(x, y)) for (x, y) ∈ V2.

It follows that

• the projection map π : X(V1) = V ⊂ S → V2 is one-to-one on V,

=⇒ V is a graph of z = z ◦ (π ◦X)−1(x, y) on V2.

In fact, since X is a homeomorphism, V = X(V1) = (X−1)−1(V1) is an open neighborhood of p
in S and since

• z = z(u, v) is differentiable for (u, v) ∈ V1,

• (u(x, y), v(x, y)) = (π ◦X)−1(x, y) is differentiable for (x, y) ∈ V2,

=⇒ z = z(u(x, y), v(x, y)) = z ◦ (π ◦X)−1(x, y) is differentiable in ∈ V2,

and

V = {X(u, v) = (x(u, v), y(u, v), z(u, v)) | (u, v) ∈ V1}
= {(x, y, z) | z = z(u(x, y), v(x, y)) = z ◦ (π ◦X)−1(x, y), (x, y) ∈ V2},

V is the graph of the differentiable function z = z(u(x, y), v(x, y)) = f(x, y) over V2, and this
settles the first case.

The remaining cases can be treated in the same way, yielding x = h(y, z) and y = g(x, z).

Proposition 4. Let p ∈ S be a point of a regular surface S and let X : U ⊂ R2 → R3 be a
map with p ∈ X(U) ⊂ S such that conditions (1) and (3) of Def. 1 hold. Assume that X is
one-to-one. Then X−1 is continuous.
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Proof Let X : U ⊂ R2 → S ⊂ R3 be defined by

X(u, v) = (x(u, v), y(u, v), z(u, v)), for (u, v) ∈ U,

and let p = X(q) for some q ∈ U.
By conditions 1 and 3, we can assume, by interchanging the coordinate axis if necessary, that

∂(x, y)

∂(u, v)
(q) 6= 0.

By the inverse function theorem, there exist open neighborhoods V1 of q, V2 of π ◦ X(q) such
that π ◦X maps V1 diffeomorphically onto V2, where π : R3 → R2 is the projection defined by
π(x, y, z) = (x, y) for (x, y, z) ∈ R3. It follows that (π ◦ X)−1 : V2 → V1 and π : R3 → R2 are
continuous maps.

Assume now that X is one-to-one. Then X : V1 → V = X(V1) ⊂ S has an inverse X−1 : V → V1

and, since X−1 = (π◦X)−1 ◦π : V → V1 is a composition of continuous maps, X−1 is continuous.

Examples

1. The one-sheetd cone C, given by z = +
√
x2 + y2, (x, y) ∈ R2, is not a regular surface.

If C were a regular surface, it would be, in a neighborhood of (0, 0, 0) ∈ C, the graph of a
differentiable function having one of three forms: y = h(x, z), x = g(y, z), z = f(x, y).

The two first forms can be discarded by the simple fact that the projections of C over the
xz and yz planes are not one-to-one. The last form would have to agree, in a neighborhood
of (0, 0, 0), with z = +

√
x2 + y2. Since z = +

√
x2 + y2 is not differentiable at (0, 0), this is

impossible.

2. Let a > r > 0, S1 = {(y, z) | (y − a)2 + z2 = r2} and T be the torus generated by rotating
S1 about z-axis. Then

X(u, v) = ((r cosu+ a) cos v, (r cosu+ a) sin v, r sinu) where 0 < u < 2π, 0 < v < 2π

is a parametrization for the torus T.

Condition 1 of Def. 1 is easily checked, and condition 3 reduces to a straightforward
computation, which is left as an exercise. Since we know that T is a regular surface,
condition 2 is equivalent, by Prop. 4, to the fact that X is one-to-one.

To prove that X is one-to-one, we first observe that sinu = z/r also, if
√
x2 + y2 ≤ a, then

π/2 ≤ u ≤ 3π/2, and if
√
x2 + y2 ≥ a, then either 0 < u ≤ π/2 or 3π/2 ≤ u < 2π. Thus,

given (x, y, z), this determines u, 0 < u < 2π, uniquely. By knowing u, x, and y we find
cos v and sin v. This determines v uniquely, 0 < v < 2π. Thus, X is one-to-one.

It is easy to see that the torus can be covered by three such coordinate neighborhoods.

Change of Parameters; Differentiable Functions on Surface

Proposition 1 (Change of Parameters). Let p be a point of a regular surface S, and let
X : U ⊂ R2 → S, Y : V ⊂ R2 → S be two parametrizations of S such that p ∈ X(U)∩Y (V ) = W.
Then the “change of coordinates” h = X−1 ◦ Y : Y −1(W )→ X−1(W ) is a diffeomorphism; that
is, h is differentiable and has a differentiable inverse h−1.
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In other words, if X and Y are given by

X(u, v) = (x(u, v), y(u, v), z(u, v)), (u, v) ∈ U
Y (ξ, η) = (x(ξ, η), y(ξ, η), z(ξ, η)), (ξ, η) ∈ V

then the change of coordinates h, given by

u = u(ξ, η), v = v(ξ, η), (ξ, η) ∈ Y −1(W ),

has the property that the functions u and v have continuous partial derivatives of all orders, and
the map h can be inverted, yielding

ξ = ξ(u, v), η = η(u, v) (u, v) ∈ X−1(W ),

where the functions ξ and η also have partial derivatives of all orders. Since

∂(u, v)

∂(ξ, η)
· ∂(ξ, η)

∂(u, v)
= 1,

this implies that the Jacobian determinants of both h and h−1 are nonzero everywhere.

Proof h = X−1 ◦ Y is a homeomorphism, since it is composed of homeomorphisms. It is not
possible to conclude, by an analogous argument, that h is differentiable, since X−1 is defined in
an open subset of S, and we do not yet know what is meant by a differentiable function on S.

We proceed in the following way. Let r ∈ Y −1(W ) and set q = h(r) ∈ X−1(W ).
Since X(u, v) = (x(u, v), y(u, v), z(u, v)) is a parametrization, we can assume, by renaming the
axes if necessary, that

∂(x, y)

∂(u, v)
(q) 6= 0.

We extend X to a map F : U × R→ R3 defined by

F (u, v, t) = (x(u, v), y(u, v), z(u, v) + t), (u, v) ∈ U, t ∈ R.
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Geometrically, F maps a vertical cylinder C over U into a “vertical cylinder” over X(U) by
mapping each section of C with height t into the surface X(u, v)+ te3, where e3 is the unit vector
of the z axis.

It is clear that F is differentiable and that the restriction F |U×{0} = X. Since

det dFq =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x

∂u

∂x

∂v
0

∂y

∂u

∂y

∂v
0

∂z

∂u

∂z

∂v
1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=
∂(x, y)

∂(u, v)
(q) 6= 0,

we can apply the inverse function theorem to find an open neighborhood M of p = X(q) in R3

such that F−1 exists and is differentiable in M .

By the continuity of Y, there exists an open neighborhood N = Y −1(M ∩ Y (V )) ⊂ V of r in V
such that Y (N) ⊂M ∩ S. Since X−1|Y (N) = F−1|Y (N), and restricted to N,

h|N = X−1 ◦ Y |N = F−1 ◦ Y |N is a composition of differentiable maps

=⇒ h is differentiable at r ∈ Y −1(W ).

=⇒ Since r is arbitrary, h is differentiable on Y −1(W ).

Exactly the same argument can be applied to show that the map h−1 is differentiable, and so h
is a diffeomorphism.

Definition Let f : V ⊂ S → R be a function defined in an open subset V of a regular surface
S. Then f is said to be differentiable at p ∈ V if, for some parametrization X : U ⊂ R2 → S
with p ∈ X(U) ⊂ V, the composition f ◦ X : U ⊂ R2 → R is differentiable at X−1(p). f is
differentiable in V if it is differentiable at all points of V.

It follows immediately from the last proposition that the definition given does not depend on
the choice of the parametrization X. In fact, if Y : V ⊂ R2 → S is another parametrization with
p ∈ Y (V ), and if h = X−1 ◦ Y , then f ◦ Y = f ◦X ◦ h is also differentiable, whence the asserted
independence.

Remark 1 We shall frequently make the notational abuse of indicating f and f ◦X by the same
symbol f(u, v), and say that f(u, v) is the expression of f in the system of coordinates X. This
is equivalent to identifying X(U) with U and thinking of (u, v), indifferently, as a point of U and
as a point of X(U) with coordinates (u, v). From now on, abuses of language of this type will be
used without further comment.

Example 1 Let S be a regular surface and V ⊂ R3 be an open set such that S ⊂ V . Let
f : V ⊂ R3 → R be a differentiable function. Then the restriction of f to S is a differentiable
function on S. In fact, for any p ∈ S and any parametrization X : U ⊂ R2 → S in p, the function
f ◦X : U → R is differentiable. In particular, the following are differentiable functions:

1. The height function relative to a unit vector v ∈ R3, h : S → R, given by h(p) = p ·v, p ∈ S,
where the dot denotes the usual inner product in R3. h(p) is the height of p ∈ S relative to
a plane normal to v and passing through the origin of R3.

2. The square of the distance from a fixed point p0 ∈ R3, f(p) = |p − p0|2, p ∈ S. The need
for taking the square comes from the fact that the distance |p− p0| is not differentiable at
p = p0.
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Remark 2 The proof of Prop. 1 makes essential use of the fact that the inverse of a parametriza-
tion is continuous. Since we need Prop. 1 to be able to define differentiable functions on surfaces
(a vital concept), we cannot dispose of this condition in the definition of a regular surface.

The definition of differentiability can be easily extended to mappings between surfaces.

Definition A continuous map ϕ : V1 ⊂ S1 → S2 of an open set V1 of a regular surface S1 to a
regular surface S2 is said to be differentiable at p ∈ V1 if, given parametrizations

X1 : U1 ⊂ R2 → S1, X2 : U2 ⊂ R2 → S2

with p ∈ X1(U1) and ϕ(X1(U1)) ⊂ X2(U2), the map

X−1
2 ◦ ϕ ◦X1 : U1 → U2

is differentiable at q = X−1
1 (p).

In other words, ϕ is differentiable if when expressed in local coordinates as

ϕ(u1, v1) = (ϕ1(u1, v1), ϕ2(u1, v1))

the functions ϕ1 and ϕ2 have continuous partial derivatives of all orders.

Note that one can use Prop. 1 to show that this definition of differentiability of ϕ : S1 → S2

does not depend on the choice of parametrizations.

We should mention that the natural notion of equivalence associated with differentiability is the
notion of diffeomorphism.

Definition Two regular surfaces S1 and S2 are diffeomorphic if there exists a differentiable map
ϕ : S1 → S2 with a differentiable inverse ϕ−1 : S2 → S1. Such a ϕ is called a diffeomorphism
from S1 to S2.
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Note that, if ϕ : S1 → S2 is a diffeomorphism from S1 to S2, then f : S2 → R is differentiable
on S2 if and only if f ◦ ϕ : S1 → R is differentiable on S1, i.e. two diffeomorphic surfaces are
indistinguishable from the point of view of differentiability.

Example 2 If X : U ⊂ R2 → S is a parametrization, then X−1 : X(U) → U ⊂ R2 is
differentiable.

In fact, for any p ∈ X(U) and any parametrization Y : V ⊂ R2 → S in p, we have that

X−1 ◦ Y : Y −1(X(U) ∩ Y (V ))→ X−1(X(U) ∩ Y (V )) is differentiable.

This shows that U and X(U) are diffeomorphic (i.e., every regular surface is locally diffeomorphic
to a plane) and justifies the identification made in Remark 1.

Example 3 Let S1 and S2 be regular surfaces. Assume that S1 ⊂ V ⊂ R3, where V is an open
set of R3, and that ϕ : V → R3 is a differentiable map such that ϕ(S1) ⊂ S2. Then the restriction
ϕ|S1 : S1 → S2 is a differentiable map.

In fact, given p ∈ S1 and parametrizations

X1 : U1 ⊂ R2 → S1, X2 : U2 ⊂ R2 → S2

with p ∈ X1(U1) and ϕ(X1(U1)) ⊂ X2(U2), we have that the map

X−1
2 ◦ ϕ ◦X1 : U1 → U2 is differentiable.

The following are particular cases of this general example:

1. Let S be symmetric relative to the xy plane; that is, if (x, y, z) ∈ S, then also (x, y,−z) ∈ S.
Then the (antipodal) map σ : S → S, which takes p ∈ S into its symmetrical point, is
differentiable, since it is the restriction to S of the differentiable map σ : R3 → R3 defined
by

σ(x, y, z) = (x, y, z) for (x, y, z) ∈ R3.

This, of course, generalizes to surfaces symmetric relative to any plane of R3.

2. Let Rz,θ : R3 → R3 be the rotation of angle θ about the z axis, and let S ⊂ R3 be a
regular surface invariant by this rotation; i.e., {Rz,θ(p) | p ∈ S} ⊆ S. Then the restriction
Rz,θ : S → S is a differentiable map.

3. Let ϕ : R3 → R3 be given by

ϕ(x, y, z) = (xa, yb, zc), where a, b and c are nonzero real numbers.

Then ϕ is clearly differentiable, and the restriction ϕ|S2 is a differentiable map from the
sphere

S2 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1}

into the ellipsoid

{(x, y, z) ∈ R3 | x
2

a2
+
y2

b2
+
z2

c2
= 1}.

Remark 3 Proposition 1 implies (cf. Example 2) that a parametrization X : U ⊂ R2 → S
is a diffeomorphism of U onto X(U). Actually, we can now characterize the regular surfaces as
those subsets S ⊂ R3 which are locally diffeomorphic to R2; that is, for each point p ∈ S, there
exists a neighborhood V of p in S, an open set U ⊂ R2, and a map X : U → V, which is a
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diffeomorphism. This pretty characterization could be taken as the starting point of a treatment
of surfaces (see Exercise 13).

Definition A parametrized surface X : U ⊂ R2 → R3 is a differentiable map X from an
open set U ⊂ R2 into R3. The set X(U) ⊂ R3 is called the trace of X. X is regular if the
differential dXq : R2 → R3 is one-to-one for all q ∈ U (i.e., the vectors ∂X/∂u, ∂X/∂v are
linearly independent for all q ∈ U). A point p ∈ U where dXp is not one-to-one is called a
singular point of X.

Observe that a parametrized surface, even when regular, may have self-intersections in its trace
since X : U ⊂ R2 → R3 is not necessary a homeomorphism (or a global one-to-one map).

Example Let α : I → R3 be a nonplanar regular parametrized curve. Define

X(t, v) = α(t) + vα′(t), (t, v) ∈ I × R.

X is a parametrized surface called the tangent surface of α.

Suppose that the curvature k(t) 6= 0, for all t ∈ I, and restrict the domain of X to

U = {(t, v) | (t, v) ∈ I × R; v 6= 0}.

Since k(t) =
|α′′(t) ∧ α′(t)|
|α′(t)|3

6= 0,
∂X

∂t
= α′(t) + vα′′(t) and

∂X

∂v
= α′(t), we have

∂X

∂t
∧ ∂X
∂v

= vα′′(t) ∧ α′(t) 6= 0 for all (t, v) ∈ U.

It follows that the restriction X : U → R3 is a regular parametrized surface, the trace of which
consists of two connected pieces whose common boundary is the set α(I).

Proposition Let X : U ⊂ R2 → R3 be a regular parametrized surface and let q ∈ U. Then there
exists a neighborhood V of q in R2 such that X(V ) ⊂ R3 is a regular surface.

Proof Let X : U ⊂ R2 → R3 be defined by

X(u, v) = (x(u, v), y(u, v), z(u, v)), (u, v) ∈ U.

By regularity, we can assume that
∂(x, y)

∂(u, v)
(q) 6= 0. Define a map F : U × R→ R3 by

F (u, v, t) = X(u, v) + t(0, 0, 1) = (x(u, v), y(u, v), z(u, v) + t), (u, v) ∈ U, t ∈ R.

Then

det(dF(q,0)) =
∂(x, y)

∂(u, v)
(q) 6= 0.

By the inverse function theorem, there exist open neighborhoods W1 of (q, 0) and W2 of F (q, 0)
such that F : W1 → W2 is a diffeomorphism. Set V = W1 ∩ U ⊂ R2 and observe that the
restriction F |V = X|V . Thus, X(V ) = F (V ) is diffeomorphic to V, and hence a regular surface.

The Tangent Plane; The Differential of a Map

Definition Let S be a regular surface and p be a point in S. Then a vector w is called a tangent
vector to S at the point p if there exists a differentiable parametrized curve α : (−ε, ε)→ S such
that α(0) = p and α′(0) = w. The set of tangent vectors to S at p, denoted by TpS, is called the
tangent plane to S at p.
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Proposition 1. Let X : U ⊂ R2 → S be a parametrization of a regular surface S and let q ∈ U.
The vector subspace of dimension 2,

dXq(R2) ⊂ R3,

coincides with the set of tangent vectors to X at X(q), i.e. dXq(R2) = TX(q)S.

Proof Let w ∈ TX(q)S be a tangent vector at X(q), that is, let w = α′(0), where α : (−ε, ε) →
X(U) ⊂ S is differentiable and α(0) = X(q). Since U and X(U) are diffeomorphic, X−1 :
X(U) → U is differentiable and the curve β = X−1 ◦ α : (−ε, ε) → U is differentiable. This
implies that X ◦ β(t) = α(t) for t ∈ (−ε, ε) and

d

dt
X ◦ β(t)|t=0 =

d

dt
α(t)|t=0 =⇒ dXq(β

′(0)) = dXβ(0)(β
′(0)) = α′(0) = w.

Hence, w ∈ dXq(R2) =⇒ TX(q)S ⊆ dXq(R2).

On the other hand, let w = dXq(v), where v ∈ R2. It is clear that v is the velocity vector of the
curve γ : (−ε, ε)→ U given by

γ(t) = tv + q, t ∈ (−ε, ε).

By the definition of the differential, w = α′(0), where α = X ◦ γ. This shows that w ∈ TX(q)S is
a tangent vector and dXq(R2) ⊆ TX(q)S.

By the above proposition, the plane dXq(R2), which passes through X(q) = p, does not depend on
the parametrization X. This plane will be called the tangent plane to S at p and will be denoted
by TpS. The choice of the parametrization X determines a basis {(∂X/∂u)(q), (∂X/∂v)(q)} of
TpS, called the basis associated to X. Sometimes it is convenient to write ∂X/∂u = Xu and
∂X/∂v = Xv.

The coordinates of a vector w ∈ TpS in the basis associated to a parametrization X are deter-
mined as follows. Let w = α′(0) for some α(t) = X(u(t), v(t)) with (u(0), v(0)) = q = X−1(p).
Thus,

w = α′(0) =
d

dt
X(u(t), v(t))|t=0= Xu(q)u

′(0) +Xv(q)v
′(0).

That is, in the basis {Xu(q), Xv(q)} of TpS, w has coordinates (u′(0), v′(0)), where (u(t), v(t))
is the expression, in the parametrization X, of a curve whose velocity vector at t = 0 is w.
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With the notion of a tangent plane, we can talk about the differential of a (differentiable) map
between surfaces. Let S1 and S2 be two regular surfaces and let ϕ : V ⊂ S1 → S2 be a
differentiable mapping of an open set V of S1 into S2. For each p ∈ V, there is a map, called the
differential of ϕ at p,

dϕp : TpS1 → Tϕ(p)S2

defined as follows.

For each w ∈ TpS1, let α : (−ε, ε) → V ⊂ S1 be a differentiable parametrized curve such that
α(0) = p and α′(0) = w. Since β = ϕ ◦ α : (−ε, ε)→ S2 is a curve in S2 such that β(0) = ϕ(p),
this implies that β′(0) ∈ Tϕ(p)S2 and it is defined to be dϕp(w), i.e. β′(0) = dϕp(w).

Note that the coordinates of a vector β′(0) ∈ Tϕ(p)S2 in the basis associated to a parametrization
X̄ are determined as follows. Let β(t) = ϕ ◦ α(t) = X̄(ū(t), v̄(t)) with (ū(0), v̄(0)) = r =
X̄−1(ϕ(p)). Then

β′(0) =
d

dt
X̄(ū(t), v̄(t))|t=0= X̄ū(r)ū

′(0) + X̄v̄(r)v̄
′(0).

That is, in the basis {X̄ū(r), X̄v̄(r)} of Tϕ(p)S2, β
′(0) has coordinates (ū′(0), v̄′(0)).

Proposition 2. In the discussion above, given w, the vector β′(0) does not depend on the choice
of α. The map dϕp : TpS1 → Tϕ(p)S2 defined by dϕp(w) = β′(0) is linear.

Proof Idea: Find a matrix representation of dϕp : TpS1 → Tϕ(p)S2 in the bases {Xu, Xv} of TpS1

and {X̄ū, X̄v̄} of Tϕ(p)S2.

Let X(u, v), X̄(ū, v̄), be parametrizations in neighborhoods of p = X(q) = X̄(r) and ϕ(p),
respectively, such that ϕ(X(u, v)) ∈ X̄(Ū) for all (u, v) ∈ U. Let

α(t) = X(u(t), v(t)) : (−ε, ε)→ S1, β(t) = ϕ ◦ α(t) = X̄(ū(t), v̄(t))

such that α(0) = p and β(0) = ϕ(p).

Consider the map Φ = X̄−1 ◦ ϕ ◦X : U → Ū given by

Φ(u, v) = (ϕ1(u, v), ϕ2(u, v)) for (u, v) ∈ U,

and the curve X̄−1 ◦ β = X̄−1 ◦ ϕ ◦ α = X̄−1 ◦ ϕ ◦X(u(t), v(t)) defined by

(ū(t), v̄(t)) = Φ(u(t), v(t)) = (ϕ1(u(t), v(t)), ϕ2(u(t), v(t))) for t ∈ (−ε, ε).

Since ū′(0)

v̄′(0)

 =


∂ϕ1

∂u
u′(0) +

∂ϕ1

∂v
v′(0)

∂ϕ2

∂u
u′(0) +

∂ϕ2

∂v
v′(0)

 =


∂ϕ1

∂u

∂ϕ1

∂v

∂ϕ2

∂u

∂ϕ2

∂v


u′(0)

v′(0)

 ,
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and since dXq(R2) = TpS1, dX̄
−1
p (Tϕ(p)S2) = R2, and

• (u′(0), v′(0)) ∈ R2 is the coordinates of w in the basis {Xu, Xv} of TpS1,

• (ū′(0), v̄′(0)) ∈ R2 is the coordinates of β′(0) in the basis {X̄ū, X̄v̄} of Tϕ(p)S2,

• the matrix dΦq =

(
∂ϕ1/∂u ∂ϕ1/∂v
∂ϕ2/∂u ∂ϕ2/∂v

)
depends only on Φ,

i.e.

β′(0) = dϕp(w) ⇐⇒

ū′(0)

v̄′(0)


coordinates ofβ′(0)

=


∂ϕ1

∂u

∂ϕ1

∂v

∂ϕ2

∂u

∂ϕ2

∂v


u′(0)

v′(0)


coordinates ofw

,

we conclude that

• β′(0) is independent of α,

• the matrix dΦq is a linear map from TpS1 in the basis {Xu, Xv} to Tϕ(p)S2 in the basis
{X̄ū, X̄v̄},
• dΦq is the matrix representation of dϕp in the bases {Xu, Xv} of TpS1 and {X̄ū, X̄v̄} of
Tϕ(p)S2.

Hence dϕp is a linear mapping from TpS1 into Tϕ(p)S2.

The linear map dϕp defined by Prop. 2 is called the differential of ϕ at p ∈ S1. In a similar way
we define the differential of a (differentiable) function f : U ⊂ S → R at p ∈ U as a linear map
dfp : TpS → R.
Example Let v ∈ R3 be a unit vector and let h : S → R, h(p) = v · p, p ∈ S, be the height
function defined in Example 1 of Sec. 2-3. To compute dhp(w), w ∈ TpS, choose a differentiable
curve α : (−ε, ε)→ S with α(0) = p, α′(0) = w. Since h(α(t)) = α(t) · v, we obtain

dhp(w) =
d

dt
h(α(t))|t=0 = α′(0) · v = w · v.

Example Let S2 ⊂ R3 be the unit sphere

S2 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1}

and let Rz,θ : R3 → R3 be the rotation of angle θ about the z axis. Then Rz,θ restricted to S2 is a
differentiable map of S2. We shall compute (dRz,θ)p(w), p ∈ S2, w ∈ TpS2. Let α : (−ε, ε)→ S2

be a differentiable curve with α(0) = p, α′(0) = w. Then, since Rz,θ is linear,

(dRz,θ)p(w) =
d

dt
(Rz,θ ◦ α(t)) |t=0 = Rz,θ(α

′(0)) = Rz,θ(w).

Observe that Rz,θ leaves the north pole N = (0, 0, 1) fixed, and that (dRz,θ)N : TNS
2 → TNS

2 is
just a rotation of angle θ in the plane TNS

2.

We shall say that a mapping ϕ : U ⊂ S1 → S2 a local diffeomorphism at p ∈ U if there exists an
open neighborhood V ⊂ U of p such that ϕ restricted to V is a diffeomorphism onto an open set
ϕ(V ) ⊂ S2. In these terms, the version of the inverse of function theorem for surfaces is expressed
as follows.
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Proposition 3. If S1 and S2 are regular surfaces and ϕ : U ⊂ S1 → S2 is a differentiable
mapping of an open set U ⊂ S1 such that the differential dϕp of ϕ at p ∈ U is an isomorphism,
then ϕ is a local diffeomorphism at p.

Remark By fixing a parametrization X : U ⊂ R2 → S at p ∈ S, we can make a definite choice
of a unit normal vector at each point q ∈ X(U) by the rule

N(q) =
Xu ∧Xv

|Xu ∧Xv|
(q).

Note that N : X(U)→ R3 is a differentiable map on X(U) ⊂ S and it is not always possible to
extend this map differentiably to the whole surface S.

The First Fundamental Form; Area

Definition Let S be a regular surface in R3. For each p ∈ S and tangent vectors w1, w2 ∈ TpS ⊂
R3, there is an (induced) inner product

〈 , 〉p : TpS × TpS → R

defined by

〈w1, w2〉p = 〈w1, w2〉 = the inner product ofw1 andw2 as vectors inR3.

To this inner product, which is a symmetric bilinear form, there corresponds a quadratic form

Ip : TpS → R

defined by
Ip(w) = 〈w,w〉p = 〈w,w〉 = |w|2 ≥ 0 for w ∈ TpS,

and the quadratic form Ip on TpS is called the first fundamental form of the regular surface
S ⊂ R3 at p ∈ S.
Remark Let U be an open set in the uv-plane and let X : U ⊂ R2 → S be a parametrization of
the regular surface at p = X(u0, v0) ∈ S. For each w ∈ TpS, since there is a parametrized curve

α(t) = X(u(t), v(t)) ∈ X(U), t ∈ (−ε, ε), such that p = α(0) = X(u0, v0) and w = α′(0),

we have

Ip(w) = Ip(α
′(0)) = 〈α′(0), α′(0)〉p

= 〈Xuu
′ +Xvv

′, Xuu
′ +Xvv

′〉p
= 〈Xu, Xu〉p(u′)2 + 2〈Xu, Xv〉pu′ v′ + 〈Xv, Xv〉p(v′)2

= E(u′)2 + 2Fu′ v′ +G(v′)2,

where the values of the functions involved are computed for t = 0, and

E(u0, v0) = 〈Xu, Xu〉p,
F (u0, v0) = 〈Xu, Xv〉p,
G(u0, v0) = 〈Xv, Xv〉p
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are the coefficients of the first fundamental form in the basis {Xu, Xv} of TpS. By letting p run
in the coordinate neighborhood corresponding to X(u, v) we obtain functions E(u, v), F (u, v),
G(u, v) which are differentiable in that neighborhood.

From now on we shall drop the subsript p in the indication of the inner product 〈 , 〉p, or the
quadratic form Ip when it is clear from the context which point we are referring to. It will also
be convenient to denote the natural inner product of R3 by the same symbol 〈 , 〉 rather than
the previous dot.

Examples

1. Let p0 = (x0, y0, z0) be a point in R3, w1 = (a1, a2, a3) and w2 = (b1, b2, b3) be orthonormal
vectors in R3 and

P = {X(u, v) = p0 + uw1 + vw2 | (u, v) ∈ R2}.
Then P is a plane and E = 1, F = 0 and G = 1 at every point in P.

2. Let U = {(u, v) | 0 < u < 2π, −∞ < v <∞} and

X(u, v) = (cosu, sinu, v), for (u, v) ∈ U.

Then X(U) is an open subset of the cylinder C = {(x, y, z) ∈ R3 | x2 + y2 = 1} and E = 1,
F = 0 and G = 1 at every point X(u, v) in C.

We remark that, although the cylinder and the plane are distinct surfaces, we obtain the
same result in both cases.

3. Let a > 0 and α(u) = (cosu, sinu, au) denote a helix. Through each point of the helix,
draw a line parallel to the xy plane and intersecting the z axis. The surface generated by
these lines is called a helicoid and admits the following parametrization

X(u, v) = (v cosu, v sinu, au), (u, v) ∈ U = {(u, v) | 0 < u < 2π, −∞ < v <∞}.

Then E(u, v) = v2 + a2, F (u, v) = 0 and G(u, v) = 1.

Remarks

1. Let S be a regular surface S in R3 and let the arc length s = s(t) of a parametrized curve
α : I → S be given by

s(t) =

∫ t

0

|α′(τ)| dτ =

∫ t

0

√
I(α′(τ)) dτ.

In particular, if α(t) = X(u(t), v(t)) is contained in a coordinate neighborhood correspond-
ing to the parametrization X(u, v), we can compute the arc length of α between, say, 0 and
t by

s(t) =

∫ t

0

√
E(u′)2 + 2Fu′v′ +G(v′)2 dτ
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which implies that (
ds

dt

)2

= E

(
du

dt

)2

+ 2F
du

dt

dv

dt
+G

(
dv

dt

)2

and the “element” of arc length, ds of S, satisfies that

ds2 = Edu2 + 2Fdudv +Gdv2.

2. The angle θ under which two parametrized regular curves α : I → S, β : I → S intersect at
t = t0 is given by

cos θ =
〈α′(t0), β′(t0)〉
|α′(t0)||β′(t0)|

.

In particular, the angle ϕ of the coordinate curves of a parametrization X(u, v) is

cosϕ =
〈Xu, Xv〉
|Xu||Xv|

=
F√
EG

it follows that the coordinate curves of a parametrization are orthogonal if and only if
F (u, v) = 0 for all (u, v). Such a parametrization is called an orthogonal parametrization.

Definition Let R ⊂ S be a bounded region of a regular surface contained in the coordinate
neighborhood of the parametrization X : U ⊂ R2 → S. Then the area A(R) of R = X(Q) is
given by

A(R) =

∫∫
Q
|Xu ∧Xv| du dv, where Q = X−1(R).

Claim The integral

∫∫
Q
|Xu ∧Xv| du dv does not depend on the parametrization X.

Proof of the Claim Suppose that Ū is an open set in the ūv̄-plane, X̄ : Ū ⊂ R2 → S is another
parametrization such that R ⊂ X̄(Ū), and Q̄ = X̄−1(R), (ū, v̄) ∈ Q̄, then

X̄ū = Xu
∂u

∂ū
+Xv

∂v

∂ū
, X̄v̄ = Xu

∂u

∂v̄
+Xv

∂v

∂v̄
=⇒ |X̄ū ∧ X̄v̄| = |Xu ∧Xv|

∣∣∣∣∂(u, v)

∂(ū, v̄)

∣∣∣∣ ,
and ∫∫

Q̄
|X̄ū ∧ X̄v̄| dū dv̄ =

∫∫
Q̄
|Xu ∧Xv|

∣∣∣∣∂(u, v)

∂(ū, v̄)

∣∣∣∣ dū dv̄ =

∫∫
Q
|Xu ∧Xv| du dv.

Thus the definition of the area of R does not depend on the parametrization X.

Remark Since

|Xu ∧Xv|2 + 〈Xu, Xv〉2 = |Xu|2 |Xv|2(sin2 θ + cos2 θ) = |Xu|2 |Xv|2 =⇒ |Xu ∧Xv|2 = EG− F 2,

the area of R = X(Q) ⊂ S can be written as

A(R) =

∫∫
Q
|Xu ∧Xv| du dv =

∫∫
Q

√
EG− F 2 du dv.

Example Let a > r > 0, S1 = {(y, z) | (y − a)2 + z2 = r2} and T be the torus generated by
rotating S1 about z-axis. Find the area of T.
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Consider the coordinate neighborhood corresponding to the parametrization

X(u, v) = ((r cosu+ a) cos v, (r cosu+ a) sin v, r sinu) where 0 < u < 2π, 0 < v < 2π

which covers the torus, except for a meridian and a parallel. The coefficients of the first funda-
mental form are

E = r2, F = 0, G = (r cosu+ a)2 =⇒
√
EG− F 2 = r(r cosu+ a).

Now, consider the region Rε obtained as the image by X of the region Qε, ε > 0 and small, given
by

Qε = {(u, v) ∈ R2 | 0 < ε ≤ u ≤ 2π − ε, 0 < ε ≤ v ≤ 2π − ε}.

Then

A(T ) = lim
ε→0

A(Rε) = lim
ε→0

∫∫
Qε

r(r cosu+a) du dv = lim
ε→0

∫ 2π−ε

ε

(r2 cosu+ra) du

∫ 2π−ε

ε

dv = 4π2ra.

Orientation of Surfaces

Let X(u, v) be a parametrization of a neighborhood of a point p of a regular surface S, we
determine an orientation of the tangent plane TpS, namely, the orientation of the associated
ordered basis {Xu, Xv}. If p belongs to the coordinate neighborhood of another parametrization
X̄(ū, v̄), the new basis {X̄ū, X̄v̄} is expressed in terms of the first one by

X̄ū = Xu
∂u

∂ū
+Xv

∂v

∂ū
,

X̄v̄ = Xu
∂u

∂v̄
+Xv

∂v

∂v̄
,

where u = u(ū, v̄) and v = v(ū, v̄) are the expressions of the change of coordinates. The bases
{Xu, Xv} and {X̄ū, X̄v̄} determine, therefore, the same orientation of TpS if and only if the

Jacobian
∂(u, v)

∂(ū, v̄)
of the coordinate change is positive.

Definition A regular surface S is called orientable if it is possible to cover it with a family of
coordinate neighborhoods in such a way that if a point p ∈ S belongs to two neighborhoods
of this family, then the change of coordinates has positive Jacobian at p. The choice of such a
family is called an orientation of S, and S, in this case, is called oriented. If such a choice is not
possible, the surface is called nonorientable.

Example A surface which is the graph of a differentiable function is an orientable surface. In
fact, all surfaces which can be covered by one coordinate neighborhood are trivially orientable.

Given a system of coordinates X(u, v) at p, we have a definite choice of a unit normal vector N
at p by the rule

N(p) =
Xu ∧Xv

|Xu ∧Xv|
(p).

Taking another system of local coordinates X̄(ū, v̄) at p, we see that

X̄ū ∧ X̄v̄ = (Xu ∧Xv)
∂(u, v)

∂(ū, v̄)
,
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where
∂(u, v)

∂(ū, v̄)
is the Jacobian of the coordinate change. Hence, N will preserve its sign or change

it, depending on whether
∂(u, v)

∂(ū, v̄)
is positive or negative, respectively.

Definition Let U be an open subset of a regular surface S. A map N : U → R3 is called a
differentiable field of unit normal vectors on an open set U ⊂ S if N : U → R3 is differentiable
with |N(q)| = 1 at each q ∈ U.
Proposition A regular surface S ⊂ R3 is orientable if and only if there exists a differentiable
field of unit normal vectors N : S → R3 on S.

Outline of the Proof If S is orientable, it is possible to cover it with a family of coordinate
neighborhoods so that, in the intersection of any two of them, the change of coordinates has a
positive Jacobian. For each p ∈ S, let N : S → R3 be defined by

N(p) =
Xu ∧Xv

|Xu ∧Xv|
(p),

where X(u, v) is a parametrization of S at p. Since S is orientable, N is well-defined and is a
differentiable field of unit normal vectors on S.

Conversely, suppose that there exists a differentiable field of unit normal vectors N : S → R3 on
S. For each p ∈ S, let X(u, v) be a parametrization of S at p such that

f(p) = 〈N(p),
Xu ∧Xv

|Xu ∧Xv|
〉(p) = 1.

Since the collection of all such coordinate neighborhoods

{X : U ⊂ R2 → S | S = ∪X(U), and f(q) = 1 for each q ∈ X(U)}

covers S and the change of coordinates has positive Jacobian at each p ∈ S, the regular surface
S is orientable.

Proposition If a regular surface is given by S = {(x, y, z) ∈ R3 | f(x, y, z) = a}, where
f : U ⊂ R3 → R is differentiable and a is a regular value of f, then S is orientable.

Outline of the Proof For each p = (x, y, z) ∈ S, let N(p) be the unit normal vector defined by

N(p) =
∇f
|∇f |

(p),

where ∇f(p) = (fx, fy, fz)(p) is the gradient vector of f at p. Since N is differentiable, S is
orientable.

Example The sphere is an orientable surface.

Example Let S1 be the circle given by x2 + y2 = 4 and AB be the open segment given in the
yz plane by y = 2, |z| < 1. Move the center C of AB along S1 and turn AB about C in the
Cz plane in such a manner that when C has passed through an angle u, AB has rotated by an
angle u/2. When C completes one trip around the circle, AB returns to its initial position, with
its end points inverted and we obtain a nonorientable surface M, called the Möbius strip.

Let U = {(u, v) | 0 < u < 2π, −1 < v < 1} and the coordinates X, X̄ : U →M be defined by

X(u, v) =
((

2− v sin
u

2

)
sinu,

(
2− v sin

u

2

)
cosu, v cos

u

2

)
, (u, v) ∈ U

X̄(ū, v̄) =
([

2− v̄ sin
(π

4
+
ū

2

)]
cos ū, −

[
2− v̄ sin

(π
4

+
ū

2

)]
sin ū, v̄ cos

(π
4

+
ū

2

))
, (ū, v̄) ∈ U
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Observe that the intersection of the two coordinate neighborhoods is not connected but consists
of two connected components

W1 = {X(u, v) | π
2
< u < 2π}, W2 = {X(u, v) | 0 < u <

π

2
}.

The change of coordinates is given by

ū = u− π

2
, v̄ = v in W1,

ū = u+
3π

2
, v̄ = −v in W2.

It follows that

∂(ū, v̄)

∂(u, v)
= 1 > 0 in W1,

∂(ū, v̄)

∂(u, v)
= −1 < 0 in W2.

Suppose that it is possible to define a differentiable field of unit normal vectors N : M → R3.
Interchanging u and v if necessary, we can assume that

N(p) =
Xu ∧Xv

|Xu ∧Xv|
(p)

for any p in the coordinate neighborhood of X(u, v). Analogously, we may assume that

N(p) =
X̄ū ∧ X̄v̄

|X̄ū ∧ X̄v̄|

at all points of the coordinate neighborhood of X̄(ū, v̄). However, the Jacobian of the change
of coordinates must be −1 in either W1 or W2 (depending on what changes of the type u → v,
ū→ v̄ has to be made). If p is a point of that component of the intersection, then N(p) = −N(p),
which is a contradiction.
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